
Performance Improvement for Multi-Key Quick Sort using Kepler GPUs 

 

     Bharath Shamasundar, Amoolya Shetty 
         Department of Computer Science and Engineering 

NMAM Institute of Technology 

Udupi, India  

{bharathbs294, amushetty93}@gmail.com  

Ananya Rao, Supreetha Shetty, Neelima Bayyapu 

Department of Computer Science and Engineering 

NMAM Institute of Technology 

Udupi, India 

{ananyaraoj, supreethashetty8}@gmail.com; 

reddy_neelima@yahoo.com

 

 

Abstract— This paper presents the performance 

improvement obtained by multi key quick sort on 

Kepler NVIDIA GPUs. Since Multi key quick sort 

is a recursion based algorithm many of the 

researchers have found it laborious to parallelize 

the algorithm on the multi and many core 

architectures. A survey of imperative string sorting 

algorithm and a robust perceptivity of the Kepler 

GPU architecture gave rise to an intriguing 

rumination of matching the template of Multi key 

quick sort with the dynamic parallelism feature 

offered by the Kepler based GPU’s. The CPU 

parallel implementation of parallel multi key quick 

sort gives 33 to 50 percentage of improvement and 

62 to 75 percentage of improvement when 

compared to 8-bit and 16-bit parallel MSD radix 

sort respectively. The GPU implementation of multi 

key quick sort gives 6X to 18X speed up compared 

to the CPU parallel implementation of parallel 

multi key quick sort. The naïve GPU 

implementation of multi key quick sort achieves 

1.5X to 7 X speed up when compared with the GPU 

implementation of string sorting algorithm using 

singleton elements by Deshpande and Narayanan 

[1].  

Keywords- Multikey quick sort; Graphic 

processing unit; Kepler NVIDIA GPU; 

I.  INTRODUCTION  

In this ever changing world, and the expanding 
horizon of research ideas, the need of the hour is 
to accelerate time bound applications with 
minimal effort. The use of GPUs has evolved 
from being a graphic rendering module to a 
component that can be used to handle efficient 
computations in parallel. The use of GPUs for 
general purpose computations is called General-
Purpose computing on Graphics Processing Units 
(GPGPU). With the advent of GPGPU’s it is now 
possible to exploit the massive computing 
capability of the GPU’s by the use of  APIs that 
shrouds the GPU hardware working  from the 

programmers making it easily programmable. One 
such programming API that has been introduced 
by NVidia for parallel computing using GPUs is 
the Compute Unified Device Architecture 
(CUDA) [2-3].  

With every new version of the GPU 
architecture, there is an increased possibility of 
applications that can take advantage of this 
improvement. A sorting algorithm, based on 
recursion that was previously considered 
incapable of being parallelized in terms of 
GPGPU is now ported onto the latest GPU 
architecture that supports the framework of the 
sorting algorithm is considered in this paper.  

Some research studies have provided a 
plausible solution of using merge-sort to partition 
the input [4] as there are memory issues when 
string sorting is implemented on the GPU. This 
method might not work when there is a large 
amount of data since merge sort requires a lot of 
shared memory. Most Significant Digit (MSD) 
radix sort performs the best on GPUs.  

The major contributions of this paper are as 
follows: 

� Analyzing various string sorting 
algorithms that have been 
implemented on multi core and many 
core architectures 

� Proposes porting multi key quick sort 
onto latest GPU cards that enables 
parallelization of recursion based 
algorithm  

� Evaluating the implementation by 
comparing the performance with other 
high performing sorting techniques on 
both multi core and many core 
architectures. 

II. BACKGROUND DETAILS 

This section gives details about the CUDA 

programming model. 



A. CUDA Programming Model  

CUDA is programming interface to use the 

GPU for general purpose computing. It can be 

coded as an extension to the C language. The 

CPU sees a CUDA device as a multi-core co-

processor. The CUDA design inherently does not 

have memory restrictions of GPGPU. One can 

access all memory available on the device using 

CUDA with no limitation on its representation 

though the access times is changing for different 

types of memory. Figure 1 shows the outline of 

CUDA programming model. 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

                  Figure 1: CUDA Programming model. 

III. RELATED WORK 

This section gives review of string sorting 
algorithms on CPUs and GPUs. 

A. CPU String Sorting Algorithms 

 The most popular and efficient string sorting 

algorithms are: Multi key quick sort [5], Most 

Significant Digit (MSD) radix sort [6], and Burst 

sort [7] [8]. Burst sort sorts the strings by using 

burst-trie data structure combined with some 

standard sorting algorithm [5] [9]. The strings are 

organized into small buckets and inserted into a 

burst-trie. These buckets are then sorted within 

the CPU cache memory. The buckets are already 

in lexicographic order and there is no need to sort 

them. The sorted buckets are the final desired 

sorted output. The limitations of burst sort include 

limiting the number of strings in the bucket in 

order to reduce the number of blocks present in 

the cache.  
Further, Karkkainen and Rantala [6] have 

engineered a string radix sort using most 
significant digit. The authors have used counting 
technique to pre-compute the bucket size and the 
authors have also developed a dynamic approach 

of resizing and generating new buckets which use 
insertion sort when the bucket size is minimum.  

 Bentley and Sedgewick in [5] have 
implemented multi key quick sort which is a 
hybrid algorithm involving quick sort and MSD 
radix sort. The algorithm works similar to integer 
quick sort, in the sense that the first character and 
a pivot element is chosen and the remaining 
elements are partitioned into less than, greater 
than and equal to sets. These sets are in turn 
recursively sorted. The introduction of the equal 
to subset improves the efficiency as it avoids 
redundant string comparisons.  

The implementation given in this paper is 

based on multi key quick sort with ternary search 

tree. The use of ternary search tree reduces the 

amount of string comparison of elements that 

match the pivot element under consideration. 

B. GPU String Sorting Algorithms 

Cederman and Tsigas [10] have developed 

parallel version of quick sort for which their 

implementation has a time complexity of O (n log 

(n)).Their implementation shows a speedup of 3x 

on high-end GPUs. Sathish, Harris and Garland 

[4] have developed radix sort that runs on GPU. 

Their implementation divides the input sequence 

into blocks that are processed by individual 

processors. This makes efficient use of memory 

bandwidth. They have also developed a fast 

merge-sort which merges small blocks present on 

the on-chip shared memory. Merill and Grimshaw 

[11] developed radix sort that uses fast scan 

primitives. Their algorithm optimizes radix sort 

by using it in a digit size manner in order to fit it 

on the GPU. Furthermore, Davidson et al. [12] 

have developed an efficient string sorting 

algorithm that makes use of merge sort in order to 

process strings with variable key lengths. 

Recently, Banerjee et al. [13] have made use of a 

hybrid CPU+GPU platform and implemented a 

faster merge sort algorithm than Davidson et 

al.Their merge sort is 20% faster for fixed length 

keys and 24% faster for variable length keys 

when compared to Davidson et al.  
Deshpande and Narayan [1] have proposed an 

algorithm which places the string with their key 

values. Strings with unique prefixes will be 

singleton and will be placed in the final output, 

the rest of the strings are assigned segment id and 

sorting continues. The algorithm gains a speedup 



of more than 10x over the best GPU string sorting 

algorithms.  

IV. PARALLEL MULTIKEY QUICK SORT 

This section gives an overview of working of 

multi key quick sort and its implementation 

details on CPU and GPU. 

A. Multikey Quick sort 

Multi key quick sort is an adaptation of integer 
quick sort [14, 15]. Similar to integer quick sort, a 
pivot character is chosen. All the strings s with a 
common prefix l are chosen. S is then partitioned 
into s<, s=, s> depending on the pivot element 
chosen. These sub sets are in turn sorted. This 
process is carried out recursively. Figure 2 shows 
the ternary partition of input based on the pivot 
element in the multi key quick sort algorithm. A 
variant of multi key quick sort has been 
implemented by Rantala [16]. They have used 
caching of characters and it is the fastest 
sequential implementation of multi key quick sort 
till date. Bentley and Sedgewick [5] proposed 
multikey quick sort that uses ‘split-end’ partition 
technique to sort strings. This technique involves 
lots of operations to swap equal elements among 
the partitions. An improvement of the algorithm 
for many equal elements has been provided by 
Kim and Park [17]. They have used a ‘collect-
center’ partitioning technique. In this method they 
have partitioned the equal elements directly to the 
middle instead of swapping them back and forth 
from the middle and end partitions. The proposed 
work in this paper uses this fast technique of 
partitioning in the implementation of multi key 
quick sort. 
 

 

 

 

 

 

 

 

 

 
        Fig. 2. Ternary Search tree partitioning in Multi key quick sort   

B. CPU Parallel Multi key Quick sort 

Bingmann and Sanders [18] have implemented 

the CPU parallel multi key quick sort. In order to 

parallelize multi key quick sort, the authors have 

extended a well-known blocking schema. When 

all items in a block are classified as <, = or >, 

then the block is added to the corresponding 

output set, namely S<, S=, or S>. This continues 

as long as un-partitioned blocks are available. If 

no more input blocks are available, an extra 

empty memory block is allocated and a second 

phase starts. The second partitioning phase ends 

with fully classified blocks that might be only 

partially filled. For each partitioning step there 

can be at most 3p partially filled blocks. The 

output sets S<, S=, and S> are processed 

recursively with threads divided as evenly among 

them as possible. The cached characters are 

updated only for the S= set.    

A naïve approach to parallelize the recursive 

algorithm is using dynamic parallelism provided 

by the latest Kepler architectures. The technique 

of task parallelism for every recursive branch is 

used. By using this technique, the number of 

threads acting on a recursive function is doubled 

for every level of recursion. In the first iteration, 

the input string is partitioned into three sub-

partition arrays of less than, greater than and 

equal to partitions. This iteration is done using a 

single thread launched by the kernel. In the next 

iteration the three threads are launched to handle 

the recursive sub-partitioning of the array. 

Therefore, the number of threads to be launched 

increases linearly by a factor of three for every 

iteration. The Pseudo code for GPU multi-key 

quick sort in shown in Figure 3. 

         
Fig. 3. Psuedo-Code for GPU Multikey quick sort   

V. EXPERIMENTAL RESULTS AND PERFORMANCE 

ANALYSIS 

This section gives implementation of efficient 
and popular string sorting algorithms that have 
been tested on different test cases and we use 
these algorithm’s performance measures to 
compare multi key quick sort’s performance. The 
sequential algorithms that have been implemented 
are Sinha burst sort [19], Rantala MSD radix sort 
[6] and Bingman and Sanders multikey quick sort 



[18]. The parallel CPU algorithms include 
Bingman MSD radix sort and Bingman parallel 
multi key quick sort. The GPU implementations 
considered here for comparison is string sorting 
after removing singleton elements by Deshpande 
and Narayanan [1]. 

A.   Experimental Setup 
 

All the sequential implementation has been 
written in C++. All the programs have been 
compiled using gcc 4.6.3 and on a Linux 
operating system on Intel i7 processor model 
running at 3.4 GHz and 4 GB DDR3 1333 Zion 
RAM. All the details are measured using Linux 
clock function.  

The GPU environment consists of an NVidia 
Tesla K40C GPU that belongs to the Kepler 
architecture (Compute v3.5) and CUDA software 
version 6.0. The performance of parallel string 
sorting algorithm is tested on different datasets as 
shown in Table I. The runtimes measured for 
GPU algorithms do not include the file I/O 
time.The input data sets have been taken from the 
work by Sinha [19]. 

B. Sequential String Sorting on CPU 

      The graph in Figure 4 shows the performance 

of the serial algorithms on various data sets. The 

radix sort implementation by Rantala [6] shows 

better performance than the other algorithms for 

some data sets. Radix sort performs the best 

among the other sequential algorithms. Multi key 

quick sort and burst sort perform poorly when 

compared to radix sort. 

   
 

    
 

    
 

Datasets Size 

Distinct 

Words 

(x10^5) 

Word 

occurrences 

(x10^5) 
 

    
 

URL’s 304Mb 12.898 100 
 

  
 

    
 

Genome      302Mb 2.620 316.230 
 

  
 

    
 

NoDup       382Mb 316.230 316.230 
 

  
 

    
 

Large 
Artificial 

169.4Mb 
--- --- 

 

 
  

 

   
 

                    TABLE 1: DATASETS USED                    
  

C. Parallel String Sorting on CPU 

      This section analyzes the performance of the 

Parallel implementation of MSD radix sort that 

processes 16bit data, parallel MSD radix sort that 

processes 8bit data and parallel multi key quick 

sort. All The algorithms have been implemented 

by Bingman [18]. For the benchmark data set 

named Large Data Artificial, parallel multi key 

quick sort is 33 and 67 percent better than 8-bit 

and 16-bit parallel MSD radix sort respectively. 

For the other benchmark data set named URL, 

parallel multi key quick sort is 50 and 75 percent 

better than 8-bit and 16-bit parallel MSD radix 

sort respectively. Similarly, for the benchmark 

data set named Genome, parallel multi key quick 

sort is 50 and 62 percent better than 8-bit and 16-

bit parallel MSD radix sort respectively. 
Multi key quick sort doesn’t perform as 

expected for NoDup data set as shown in Figure 
5. Multi key quick sort performs the best when 
the input data set contains duplicate elements.  
         

 
Figure 4: Execution time comparison of sequential CPU string 

sorting algorithms.. 

 
Fig. 5: Execution time comparison of parallel CPU string sorting 
algorithms 
    

D.  Parallel String Sorting on GPU 
The proposed work in this paper utilizes the 

dynamic parallelism feature of Kepler 
Architecture. Figure 6 shows the normalized 
sorting time on an NVidia Tesla K40 machine.  It 
can be seen that the GPU parallel implementation 
of multikey quick sort outperforms the CPU 
parallel multikey quick sort [18]. The GPU 
implementation of multi key quick sort achieves 
6X to 18 X speed up in performance compared to 
CPU parallel implementation of multi key quick 
sort for the best case scenario. We also compared 
our work with the most efficient and highly 



optimized string sorting algorithm by Deshpande 
and Narayanan [1].  
          The performance results are distributed into 
two graphs as shown in Figure 7 and Figure 8 to 
highlight the differences in each implementation 
and separated based on the scale of y-axis. It can 
be seen from Figure 8 and Figure 9 that the GPU 
parallel multi key quick sort outperforms the 
string sorting algorithm on all datasets. GPU 
based parallel multi key quick sort achieved 1.5X 
to 7X speed up on string sorting with singleton 
elements removed from [1]. 

 
 

Fig. 6: Execution time comparison of CPU parallel Multikey quick 
sort vs GPU parallel Multi key quick sort. 
 

 
Fig. 7: Execution time comparison of GPU parallel Multikey quick 
sort vs GPU string sorting removing singleton elements [1] for 
Artificial and URL datasets. 
 

 
 Fig. 8: Execution time comparison of GPU parallel Multikey quick 
sort vs GPU string sorting removing singleton elements [1] for 
Genome and NoDup datasets 

VI. CONCLUSION AND FUTURE WORK 

   The introduction of Kepler architecture 
opens up an untouched field of parallelizing 
recursive algorithms on GPUs. This work 
highlights the fact that a naïve implementation of 
multi key quick sort was able to yield high 
performance when compared to some of the most 

efficient string sorting algorithms on the Kepler 
architecture. As a future work, it is planned to 
implement the proposed algorithm on multi 
GPUs.  
                         REFERENCES 
[1] A Deshpande, P .J. Narayan. Can GPUs sort strings 

efficiently?. In high performance computing (HiPC), 2013 
International Conference on, pages 305-313, 2013. 

[2] Neelima B., and Prakash S. Raghavendra. Recent Trends in 
Softwareand Hardware for GPGPU Computing: A 
Comprehensive Survey. In Fifth International Conference on 
Industrial and Information Systems (ICIIS).pp.319-
324.,August 2010. 

[3] http://www.nvidia.com/object/cuda_home_new.html CUDA 
Zone. 

[4] N. Satish, M. Harris, and M. Garland. Designing efficient 
sorting algorithms  for  manycore  gpus.  In  Parallel  
Distributed  Processing, 2009.IPDPS 2009. IEEE International 
Symposium on, pages 1–10, 2009. 

[5] J.  L.  Bentley and  R.  Sedgewick.  Fast  algorithms  for  
sorting and searching strings. In Proceedings of the eighth 
annual ACM-SIAM symposium on Discrete algorithms, 
SODA ’97, pages 360-369, 1997. 

[6] J. Karkkainen and T. Rantala. Engineering radix sort for 
strings. In Proceedings of  the  15th  International  
Symposium  on  String Processing and Information Retrieval, 
SPIRE ’08, pages 3–14, 2009. 

[7] R. Sinha, A. Wirth. Engineering burstsort: towards fast in-
place string sorting. In C. McGeoch, editor, Experimental 
Algorithms, volume 5038 of lecture notes in computer science, 
pages 14-27. 2008. 

[8] R. Sinha, J. Zobel and D Ring. Cache-efficient string sorting 
using copying. J. Exp. Algorithmics, 11 Feb. 2007. 

[9] P.  M. McIlroy,  K.  Bostic  and  M. D.  McIlroy.  Engineering 
radix sort.Computing Systems, 6:5–27, 1993. 

[10] D. Cederman and P. Tsigas. Gpu-quick sort: A practical quick 
sort algorithm for graphics processors. J. Exp. Algorithmics, 
14:4:1.4–4:1.24, Jan. 2010. 

[11] Merrill, D. and Grimshaw, A. 2011. High Performance and 
Scalable Radix Sorting: A case study of implementing 
dynamic parallelism for GPU computing. Parallel Processing 
Letters. 21, 02 (2011), 245-272. 

[12] A. Davidson, D. Tarjan, M. Garland, and J. D. Owens. 
Efficient parallelmerge sort for fixed and variable length keys. 
In Innovative Parallel Computing, page 9,May 2012. 

[13] D. S. Banerjee, P. Sakurikar, and K. Kothapalli. Fast, scalable 
parallel comparison sort on hybrid multicore architectures. In 
Workshop OnAccelerators for Hybrid Exascale Systems 
(AsHES), IPDPS’13, 2013. 

[14] C.A.R. Hoare, Quick sort, Computer Journal 5 (1) (April 1962) 
10–15. 

[15] R. Sedgewick, Quick sort with equal keys, SIAM Journal on 
Computing 6 (1977) 240–267. 

[16] Tommi Rantala. Library of String Sorting Algorithms in C++. 
http://github.com/rantala/string-sorting.Git repository accessed 
November 2012. 2007. 

[17] Kim, E., Park, K.: Improving multikey quick sort for sorting 
strings with many equal elements. Inf. Process. Lett. 109(9), 
454–459 (2009). 

[18] T. Bingmann and P. Sanders. Parallel string sample sort. In 
21st European Symposium on Algorithme (ESA), volume 
8125 of LNCS, pages 169–180. Springer, 2013. 

[19] Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of 
strings with dynamic tries. J. Exp. Algorithmics 9 (December 
2004) 1.5:1–31. 


